B.4 Slope of a Line

Essential Question How can the slope of a line be used to

describe the line?

You studied the following definition of the slope of a line.

Slope is the rate of change between any two points on a line. It is a measure of the *steepness* of a line. To find the slope of a line, find the ratio of the change in *y* (vertical change) to the change in *x* (horizontal change).

ACTIVITY: Extending the Concept of a Slope

Work with a partner. Find the slope of each line.

Inductive Reasoning

Work with a partner. Copy and complete the table.

	Two Points	Change in y	Change in <i>x</i>	Slope of Line
1a	2. (2, 2), (4, 4)	2	2	
1 b	3. (1, 2), (2, 1)	-1	1	
10	4. (2, 3), (4, 4)			
1d	5. (-3, 4), (1, 2)			
1e	6. (-4, -1), (-2, 3)			
17	7.			
	8. (-4, 0), (0, 1)			
	9. (-3, 4), (6, -2)			
	10. (-4, 2), (8, -1)			
	11. (-6, -1), (3, 5)			
	12. (-5, 7), (10, -5)			
	13. (0, 1), (4, 1)			
	14. (-4, -2), (-3, -6)			

-What Is Your Answer?

- **15. IN YOUR OWN WORDS** How can the slope of a line be used to describe the line?
 - **a.** Draw three lines that have positive slopes.
 - **b.** Draw three lines that have negative slopes.
- **16.** Compare a slope of 1 with a slope of 2. Show your comparison on a graph.
- **17.** Compare a slope of -1 with a slope of -2. Show your comparison on a graph.

Use what you learned about the slope of a line to complete Exercises 4–7 on page A34.

B.4 Lesson

Key Vocabulary slope, p. A32 rise, *p. A32* run, p. A32

O Key Idea

Slope

The **slope** of a line is a ratio of the change in *y* (the **rise**) to the change in *x* (the **run**) between any two points on the line.

slope = $\frac{\text{change in } y}{\text{change in } x} = \frac{\text{rise}}{\text{run}}$

EXAMPLE

1

Real-Life Application

What is the slope of the stairs when walking up to the apartment?

slope = $\frac{rise}{run}$ Write formula for slope. $=\frac{8 \text{ ft}}{12 \text{ ft}}$ Substitute. $=\frac{2}{3}$ Simplify.

• The slope of the stairs is $\frac{2}{3}$.

On Your Own

1. WHAT IF? The rise of the stairs is 9 feet. What is the slope of the stairs?

Finding the Slope of a Line 2 **EXAMPLE**

Find the slope of the line.

Write formula for slope.

Substitute.

8 ft

EXAMPLE 3 Graphing Lines Using a Point and a Slope

a. Graph the line with a slope of 3 that passes through (-3, -4).

Step 1: Plot (-3, -4).

Step 2: Find the rise and the run.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{3}{1}$$

Step 3: Plot the point that is 1 unit right and 3 units up from (-3, -4).

Step 4: Draw a line through the two points.

• The graph is shown at the left.

b. Graph the line with a slope of $-\frac{4}{3}$ that passes through (2, 3).

Step 1: Plot (2, 3).

Step 2: Find the rise and the run.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{-4}{3}$$

Step 3: Plot the point that is 3 units right and 4 units down from (2, 3).

Step 4: Draw a line through the two points.

• The graph is shown at the left.

On Your Own

Graph the line with the given slope that passes through the given point.

4. slope = 1; (1, 3) **5.** slope = $\frac{2}{5}$; (2, -1) **6.** slope = -2; (0, -2) **7.** slope = $-\frac{3}{2}$; (-4, -4)

Now You're Ready

Exercises 11-14

1

2

1 x

-5-4-3

4

(-3,

B.4 Exercises

Vocabulary and Concept Check

- **1. OPEN-ENDED** How could you measure the slope of the roof of a house?
- **2. REASONING** The slope of a line is $\frac{1}{2}$. What do you know about the graph of the line?
- **3. OPEN-ENDED** A line with slope $-\frac{2}{3}$ passes through the point (2, -6). Find two additional points on the line.

> Practice and Problem Solving

Copy and complete the table.

	Two Points	Change in <i>y</i>	Change in <i>x</i>	Slope of Line
4.	(0, 5), (2, 7)			
5.	(-10, 4), (5, -20)			
6.	(-8, -4), (-6, 5)			
7.	(1, 9), (7, 6)			

Find the slope of the line.

Graph the line with the given slope that passes through the given point.

- **B 11.** slope = 3; (1, 1) **12.** slope = $\frac{1}{5}$; (-2, 2) **13.** slope = -2; (4, 7) **14.** slope = $-\frac{3}{7}$; (-6, 1)
 - **15. POINTS** What point is 3 units right and 5 units down from (-6, -2)?

$$6[4(3 + x) - 14] + 2^2 = 0$$

(A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{4}{3}$ (D) $\frac{5}{3}$